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PREFACE 

The understanding and subsequent control of the electrical properties of thin 
films have become very important due to the evolution of devices based upon 
these thin material layers. This is especially true for photovoltaics, since 
the potential economic, large-scale deployment of such devices depends 
largely upon substantial progress in this area. Although a number of books 
and reviews are available which adequately cover the properties of 
discontinuous metal and insulator films, the overall treatment of carrier 
transport mechanisms in polycrystalline semiconductor thin films has been 
heuristic and superficial. Since many of the major contributions to this 
field remain segmented in the literature, it is the purpose of this work to 
delineate the basic electrical mechanisms, to integrate and compare recent 
contributions to previous research, and to provide a general basis for 
understanding thin semiconductor film properties. 

This report has been completed as part of the FY79 Photovoltaics Branch 
research task, 3221.10. It also serves as a chapter in the forthcoming book 
Properties of Polycrystalline and Amorphous Thin Films and Devices, published 
by Academic Press and edited by L. L. Kazmerski. This limited access report 
is being distributed with the permission of the publisher and should not be 
reproduced further. 
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CHAPTER 3 

ELECTRICAL PROPERTIES OF POLYCRYSTALLINE SEMICONDUCTOR THIN FILMS 

3.1 INTRODUCTION 

This chapter focuses on the basic electronic transport in polycrystalline 

semiconductor thin films. A number of books [ 1] and reviews are available 

that cover in detail the properties of discontinuous [2], metal [3, 4], and 

insulator films [5]. Except for earlier reviews by Anderson [6] and Bube [7], 

the treatment of carrier transport mechanisms in polycrystalline semiconductor 

thin films has been largely heuristic and superficial. Although the 

identification of the electrical properties of these films is an expanding 

area of research, many of the major contributions to this field remain 

segmented in the literature. It is the purpose of this chapter to delineate 

the basic mechanisms involved, to integrate and compare some recent 

contributions with earlier work, and to provide a general basis for 

understanding thin semiconductor film properties. 

In this chapter, the carrier transport is considered separately for two cases. 

First, the electrical characteristics of perfect, single-crystal thin films 

are examined. These transport properties are regarded as essentially those of 

the bulk crystalline semiconductor, but they are altered by the major physical 

feature of the f ilm--the surf ace. Flat-band and surface-band bending 

conditions are investigated and film thickness effects are identified. 

Second, transport mechanisms in polycrystalline films are discussed. In this 

case, the complicating factors of film defects and discontinuities are 

considered, with some emphasis on the grain boundary. The combined effects of 

surf ace scattering and defect-dominated properties are also indicated. 

At the onset of this chapter, it must be emphasized that the identification 

and definition of electronic transport in polycrystalline semiconductor films 

has largely been a modeling effort. At this writing, no universal explanation 

of transport characteristics exists for thin films. Differences should be 

anticipated. For example, polycrystalline compound semiconductor films can 



gain their extrinsic character by stoichiometry control, but elemental 

semiconductors by doping. Grain boundaries differ not only between those two 

types but also between large-grained and small-grained materials. The 

understanding and control of the electrical properties of thin semiconductor 

films has now progressed from a scientific curiosity to a necessity. The 

potential economic, large-scale deployment of devices based upon these thin 

films depends upon substantial progress in this area. While the thin-film 

research veteran may express caution or hesitancy because of the magnitude or 

seeming unsolvability of the problems, the challenge envisioned by others 

might bring about the solutions. It is hoped that this chapter might serve 

especially the latter group. 

3.2 TRANSPORT IN.THIN CRYSTALLINE FILMS 

1. Definitions and Formulations 

In this section, the most simple case of a semiconductor thin film is 

considered--the continuous single-crystal film. Conceptually, the situation 

avoids the complicating factors of film defects, defect structures (e.g., 

dislocations, stacking faults, grain boundaries, etc.) and other 

discontinuities as may affect conduction mechanisms. Therefore, the transport 

properties can be regarded as essentially those of the bulk crystalline 

material, influenced and altered by the remaining major physical feature of 

the f ilm--the surface. 

The surface of a thin film affects the electrical transport properties of a 

material, whether a semiconductor or a metal, by limiting the traversal of the 

charge carriers and their mean free paths. Even bulk materials experience 

these surface effects, but they are more pronounced in thin films because of 

the large surface-to-volume ratios. When the thickness of the film becomes 

less than or comparable to the mean free path of the carriers, the scattering 

of the electrons and holes from the film surfaces has measurable effects on 

carrier transport properties and can dominate the electrical characteristics 

of the film. Of course, the extent of the influence of surf ace scattering 
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depends upon the nature of the scattering mechanism(s) involved. 

limiting cases are: 

The two · 

• Specular Reflection: During the scattering process, the carriers 

(electrons or holes) have only their velocity component 

perpendicular to the surf ace reversed and their energy remains 

constant. Since no losses occur, there is no effect on 

conductivity. The surface represents a perfect reflector and the 

scattering is elastic. 

• Diffuse Reflection: After scattering, the carriers emerge from the 

surface with velocities independent of their incident ones. This 

process is indicative of inelastic or random scattering. The change 

in momentum leads to a related change in conductivity. 

Specular reflection is the type of scattering expected from an ideal surf ace. 

Real surfaces exhibit some amount of disorder which, in turn, results in some 

degree of diffuse scattering. The extent of diffuse scattering is determined 

by the type, density, and cross sections of the surface defects. The major 

mechanisms~ primarily surface charge impurities and electron-phonon 

interactions, that determine the extent of diffuse or specular scattering have 

been treated in detail by Greene [8-10] and Tavger ~al. [11-13]. 

Quantitatively, total diffuse scattering can lower effective film 

conductivities and mobilities more than an order of magnitude below their 

single-crystal, bulk magnitudes. For a real surface, both partial 

specular/partial diffuse scattering mechanisms exist and the resultant 

electrical properties usually lie between those predicted by either scattering 

mode. 

This section discusses the perfect semiconductor thin film, relating the 

effective film transport properties as influenced by surface conditions to the 

predicted bulk behavior. Bulk properties are summarized, and the effects of 

diffuse and specular reflection are related. Two surface conditions are 

considered. The first models the film with energy bands constant to the 

surface itself. This is commonly called the flat-band condition and is 

illustrated schematically in Fig. 3-la. Although this case is somewhat 



artificial and does not exactly represent the situation for the real 

semiconductor surface region, it is instructive and provides a basis for 

understanding the various scattering phenomena and their effects. Because of 

its simplicity, the flat-band model can be used to predict transport 

properties and has been used to explain the general electrical behavior of 

some films. The second model includes band-bending at the surface. The 

existence of surface states complicates the transport mechanisms. Band 

structures for surface depletion, inversion and accumulation are illustrated 

in Figs. 3-lb, c, and d, respectively. Effects of band bending on 

semiconductor film properties have been studied, but it is not easy to control 

surface state densities and associated surface potentials by or during film 

growth processes. Field effect techniques, discussed later in this section, 

can be utilized to demonstrate the relationships between the degree of the 

non-flat-band condition and the resulting electrical properties of the thin 

semiconductor films. 

For all film geometries in this chapter, the coordinate system shown in Fig. 

3-2 has been adopted. The z-direction is perpendicular to the film surface 

and the total film thickness defined in this direction is d. 

2. Essential Transport Phenomena 

In evaluating electrical characteristics of thin films, it is common to 

compare the film's behavior to that of the bulk crystal. If the bulk crystal 

were perfect, the electrons and holes could flow unimpeded in the perfect 

periodic potential. In the absence of external fields, each carrier would 

maintain its velocity and wavevector indefinitely. However, in the ·real bulk 

crystal lattice vibrations, impurities, and defects could deviations from the 

ideal behavior. The carriers experience a nonzero scattering probability 

which provides for a random mov~ment and continual velocity change for the 

electrons or holes. 

imposed. 

A drift current results when an electrical field is 

• 



The various scattering processes can each be characterized by a fundamental 

relaxation time, t, defined as the average time required for a disturbance in 

the electron distribution to fade by the random action of the scattering. Two 

scattering processes are especially important for bulk crystal behavior: 

first, scattering by lattice vibrations, dominant in chemically pure crystals 

at ordinary temperatures; and second, scattering from impurity centers. For 

the first case, the relaxation time is [14] 

where T is the temperature and E the carrier energy. In case 2, scattering 

occurs from impurity centers, such as ionized impurities. In this case [14] 

t - EJ/2/N i i [ 3. 21 

where Ni is the density of ionized impurities. All scattering mechanisms act 

simultaneously to some extent in real crystals. The total bulk relaxation 

time, considering each of the scattering mechanisms to be essentially 

independent, is given by [14] 

[ 3. 3] 

In order to relate the effects of the various scattering phenomena to the 

determination of the transport equations, the relaxation times are 

incorporated into the Boltzmann transport equation [ 15]. From this, the 

current-field relationship can be generated and the pertinent transport 

parameters (mobility, conductivity, carrier concentration) can be extracted. 

Following this procedure, the temperature dependencies of the lattice and the 

ionized impurity scattering carrier mobilities can be expressed [14]: 

and 

µ.. = C 'T3/2 
l. 

. [ 3. 4] 

[ 3. 5] 



r_espectively, where C and C' are constants. In addition, when both types of 

scattering are present and noninteracting, the mobilities "add" according to 

the relaxation times (Eq. 3.3), with the effective bulk crystalline mobility 

given by [ 16]. 

l/Jl...o = 11µ1 + 11~ [ 3. 61 

From Eqs. 3.4 and 3.5 it is apparent that lattice scattering predominates at 

high temperatures and impurity scattering at lower temperatures. The 

transition from the domination by one type to the other depends upon the 

material and the impurity nature and concentration. Some deviations from the 

"3/2 law" are encountered in real semiconductors due to complex band 

structures as well as optical-phonon scattering. Experimentally it has been 

found that the mobility variations usually range from T-5/ 2 to T5/ 2 

dependencies. For example, near room temperature the electron and hole 

mobilities for GaP follow Eq. 3.4, whereas for silicon, µn - T-512 [17].* 

3. The Effects of Surf aces on Carrier Transport 

The bulk transport case summarized briefly in the previous section must be 

modified even for the single-crystal thin film since the surface can scatter a 

greater number of carriers than the number not being scattered. It is assumed 

that the flat-band condition holds for the analysis in this section. The 

perturbations due to band-bending are included in Section 4. 

*In general, the temperature dependence of the mobility of a crystalline 
semiconductor can be expressed [13] 

µ-Ta+ {3/2 [ 3. 71 
where a and {3 are constants whose magnitudes and signs are indicative 
of the dominant scattering mechanism(s). 



a. Flat-Band Conditions: Rigorous Treatment 

The method utilized to incorporate the effects of surface scattering is 

similar to that cited for bulk phenomena in the previous section and starts 

with the Boltzmann equation [15] 

[ 3. 8] 

where a and c are the acceleration and the velocity of the scattered carriers, 

respectively, and f is the distribution function. This theoretical approach 

applied to surface scattering has been reported by Fuchs [ 18], Sondheimer 

[19], Lucas [20], Tavger [13], Zemel [20], Anderson [6], Frankl [22], and 

Fleitner [23]. Reviews have also been compiled by Campbell [24], Mayer [25], 

Chopra [26], and Many~ al. [27]. When an electric field, S, is applied in 

the x-direction, Eq. 3.8 reduces to a one-dimensional representation for the 

geometry shown in Fig. 3-2, in which the x and y film dimensions are very much 

greater than d, the film thickness. Therefore, 

-~ af af (f-f ) x 0 ----+c -= 
m* ac Z az T 

[ 3. 9] 

x 

The distribution function can be written [6, 27] 

[3.10] 

since the perturbation, f 1, is indepen9ent of x and y. The general form of 

the solution of the differential equation (Eq. 3.9) is [27] 

~T af 
f 1 =--;--a 0 

[l + F(c) exp(-zln:z)] 
m ex 

[3.11] 

where the functional form of F(c) depends upon the boundary conditions. 

If the upper and lower surf aces of the film are identical, from the symmetry 

of the situation 

[ 3. 12] 



Therefore, two solutions of Eq. 3.12 are found [ 6, .2 7]: 

and 

c z 
) 0 

qt-r af 
0 = m* k (1 + F(c) exp(-x/'tcz)] 
x 

[3.13a] 

[3.13b] 

However, it has already been noted that carriers can be scattered diffusely 

from the surface, and the solutions giv~n by Eqs. 3.13a and 3.13b represent 

the specular case only. The condition of the surface and its effect on the 

carrier transport can now be introduced in a simple fashion. From Eq. 3.10 

the distribution function of carriers arriving at the surface is given by 

f' = f
0 

+ f! [ 3. 141 

If some fraction, p, of these undergo specular reflection, their resultant 

distribution function leaving the surf ace is 

(3.15] 

The fraction p is called the specular scattering factor, with p=l indicating 

pure specular reflection and p=O entirely diffuse reflection. The remaining 

carriers leaving the surface, 1-p, are scattered diffusely, and their 

distribution function is 

ff' I • (1-p) f 
0 

[ 3. 161 

But, 

f' = ff I + ff II [ 3. 171 

or 

f + 
0 

f + 
1 = p(f0 +fi) + (1-p) f 0 [ 3. 18] 

Substituting Eqs. 3.13a and 3.13b into Eq. 3.18 yields [6] 

F(c) = - (1-p)/[l - p exp(-d/tcz)] [ 3.19] 



The carrier current density is calculated by inserting F(c) into Eq. 3.11 and 

integrating the product of the velocity, density of states, and distribution 

functions; that is, 

[3.20] 

.. nqµ.' 

where µ.' is the effective film mobility. 

Two solutions for the mobility result, depending on whether the semiconductor 

is degenerate or nondegenerate. For the former case, in which Fermi-Dirac 

statistics apply, the ratio of the effective to the bulk mobility is [6, 27] 
ao 

J!....,. 3(171) (/1 1 ) [ 1 - exp(-(d/A.)$) J 
µ.b 1 - 2(d~) J1\§3 - §5 1 - p exp(-(d/}.,)§) d~ [ 3. 21] 

where is the carrier mean free path. For the nondegenerate semiconductor 

case having spherical energy surfaces, Boltzmann statistics apply and [6], 

~ • 1 -(l-p)(2A./d) + (l-2p)(2A./d) Ji(~A.) + (2pA./d) r1(~) [ 3. 22] 

where ao 

f1(~A) = [exp(-€ - (d/n}.,)('7T€)-l/ZJ dE [3.23] 

and n • 1 or 2. 

The functional dependencies of the mobility ratios for the degenerate and 

nondegenerate cases (predicted by Eqs. 3.21 and 3.22, respectively) are shown 

in Fig. 3-3. Surface scattering is more dominant for the nondegenerate 

semiconductor than for the corresponding degenerate semiconductor or metal. 

As the semiconductor becomes more degenerate, the effect of surface scattering 

becomes less significant. 

Anisotropy of the effective mobility can result if the semiconductor has 

nonspherical equal-energy surfaces. The case of ellipsoidal energy surfaces 

has been considered by Ham and Mattis [28]. Their refinement of the previous 

spherical case indicates a fractional difference in mobility magnitudes for 



different crystal directions. Fig. 3-4 presents their results for the 

completely diffuse (p=O) scattering case, for a diamond structure 

nondegenerate semiconductor. The symbol .. n .. refers to the direction normal to 

the film surface and .. j .. is the current density. For a given thickness, the 

value of µ.' depends significantly upon the current direction and can be as 

much as an order of magnitude lower than that presented in Fig. 3-3. Thus the 

semiconductor thin film might be even more sensitive to the surface condition 

and film thickness than the previous analysis indicates, and some caution must 

be exhibited in applying this interpretation for transport in thinner 

semiconductor films. 

b. Flat-Band Conditions: Simplified Approach 

Another more simple approach can be used to predict the effect of surface 

scattering and film thickness on transport properties. For a nondegenerate 

semiconductor, assuming flat-bands and noninteracting scattering mechanisms, 

the total relaxation time using Matteissen's rule [16] is 

[3.24] 

where Ts represents the average time a carrier requires to collide with the 

surface toward which it is moving and Tb is defined in Eq. 3.3. The mean free 

distance of a carrier from a surface is approximately the film half thickness, 

d/2. If the unilateral mean velocity vz is defined as the average over the 

positive (or negative) z-direction veocity component of all carriers, then the 

average surface scattering time can be estimated by [27] 

(3.25] 

But since the unilateral mean free path, A, is defined as (27] 

[3.26] 

Then, 

[ 3. 2 7] 



Combining Eq. 3.24 and 3.27, the effective mobility becomes [27] 

[ 3. 28 J 

This simple derivation assumes that the surface scattering is entirely 

specular (p•l). To generalize to the case in which a fraction p of the 

carriers is scattered inelastically (diffuse scattering), it is necessary to 

adjust the expression for Ts, which represents 'the reciprocal per unit time 

probability that an electron will be scattered by a surface. Since p is the 

fraction undergoing specular (elastic) scattering, (1-p) is the fraction 

undergoing diffuse (inelastic) scattering, and the surface scattering term in 

Eq. 3.28 becomes (1-p)/Ts• Thus, the mobility can be written [6, 27] 

µ.' = µ.b [l + (l-p)(2A/d) J- 1 [3.29] 

The good agreement of Eq. 3.29 with the more rigorously derived Eq. 3.22 is 

shown in Fig. 3-3. 

The conditions of the upper and lower surfaces of a thin film might be 

expected to be quite different since one is in contact with a supporting 

substrate and the other is exposed to a dissimilar environment (gas, solid, or 

liquid). In this situation, the contributions from each surface can be 

averaged (a first order approximation) and p can be replaced by (p+q)/2 where 

p and q are the specular scattering coefficients from the upper and lower film 

surfaces, respectively. Thus, Eq. 3.29 becomes [29] 

[ 3. 30 J 

This same substitution can be incorporated directly into Eq. 3.22, keeping the 

formulation and the results consistent. 



c. Effective Surface Scattering Length 

In ef feet, the parameter A is a measure of the influence of the surface upon 

the carrier transport. The surf ace scattering length is defined in terms of 

the mean velocity of the carriers [27, 29, 30]. 

[ 3. 31 J 

where Tb is the bulk relaxation time. The velocity component is measured 

perpendicular to the film surface over which it is being averaged. This mean 

velocity is given by 

v = (kT/2m*)l/2 
z [ 3. 32] 

Therefore, combining Eq. 3.32 with Eq. 3.31 and noting that µ.b = qTb/m*, one 

can express the mean surface scattering length as [30] 

}.=C'~Tl/2 [ 3. 33 J 

where C' (m*k/ 2'7Tq 2) 1 /2 • Fig. 3-5 shows the dependence of A/µ.b on 

temperature, indicating the predicted dependence of Eq. 3. 33 for CdS films 

[ 29 J. 

The magnitude of }. is material dependent. For carrier concentrations 

comparable to the CdS (i.e., l015-1016/cm3), A= 1.95,um, 0.85,um, and 0.12,um 

for Si, GaAs, and Ge, respectively (31]. Thus, surface scattering is expected 

to affect the electrical properties of Si more than those of the other 

semiconductors at a given film thickness. For a 1 ,um thick film, the mobility 

of Ge is expected to be only about 5% less than its bulk value, while that for 

Si is about 55% less. 



4. Effects of Band-Bending at Surf ace 

The derivations of the previous sections assumed that the semiconductor energy 

bands were constant from the bulk to the surface itself. If surface states 

exist, some degree of band-bending at the surface will result under the 

following conditions: 

• Dee let ion: Majority carriers can be trapped in acceptor-type 

surf ace states (n-type semiconductor) or donor-type surf ace states 

(p-type semiconductor) at energy levels below or above the Fermi 

level, respectively. In the case of an n-type semiconductor, 

electrons are repelled from the surface region making it less n-type 

(i.e., the surface is depleted of electrons). The band edges will 

~ ~ at the surface, away from the Fermi level. If this bending 

is sufficient, the surface can become p-type (i.e., the Fermi level 

is closer to the valence band) and this condition is called 

inversion. For a p-type semiconductor, holes are repelled from the 

surf ace and the band edges bend down toward the Fermi level. Once 

again, if this bending is sufficient, the surface region can be 

inverted (i.e., become n-type). The effect is equivalent to 

applying a negative bias to the surface of the p-type semiconductor, 

or a positive bias to the surface of the n-type semiconductor. 

• Accumulation: This situation is the converse to depletion. Donor 

states at the surface of an n-type semiconductor, or acceptor states 

for a p-type semiconductor, contribute additional majority carriers 

(accumulation of majority carriers) to the conduction or valence 

bands, respectively. The band edges will bend toward the Fermi 

level (i.e., bend downward for then-type and upward for the p-type 

semiconductor). The effect here is the application of a positive 

bias to the surface of the p-type semiconductor, or a negative bias 

to the surface of the n-type semiconductor. 

Depletion and accumulation are illustrated in Fig. 3-1 in comparison to the 

flat-band case. Generally, the free surface of an impurity semiconductor is 

in depletion unless external fields are applied. The depletion condition will 



therefore receive emphasis in subsequent sections. 

a. The Surface Space Charge Region 

Fig. 3-1 shows that the extent of the penetration of the surface depletion 

region is significant. The width of this region, Le, depends upon the 

condition of the surface (surface charge, surface potential) and the condition 

of the bulk semiconductor (doping concentrations, Fermi level position, 

intrinsic concentration). For example, Waxman ~ al. [ 78] calculated the 

effective layer thickness for CdS as a function of the surface potential (vs = 
qVs/kT), as shown in Fig. 3-6. The change in Lc is predicted to be more than 

an order of magnitude for a corresponding 0-0.2 eV change in qVs. Many et al. 

[27] carefully considered this problem, using a solution of the Poisson's 

equation 

d
2v 

dz2 = - (P/ekT) 
[3.34] 

= -(q2/ekT)[nb - Pb+ Pb exp(-v) - nb exp(v)] 

where € is the semiconductor permittivity, nb and pb are the bulk carrier 

concentrations, and v is a dimensionless potential (= qV/kT). The potential 

barrier V is defined as the potential at any point in the space charge region 

with respect to the value in the bulk (i.e., V • ~ - ~b). 

For the case of small perturbations (e.g., Iv! i 1/2), the integration of Eq. 

3.34, applying the boundary condition [(dv)/(dz)]lz=O = O, yields [26] 

dv _ F(v,~) 
-=-+----dz L 

[3.35] 

where L is the effective Debye length (= [ekT/q2(nb+pb)J 112 ); ub is a reduced 

potential (= qOb/kT); and [26] 

112 [cosh(ub+v) 
F(v,ub) = 2 h( ) cos ub 

1/2 

- v tanh(ub) - i] [3.36] 



The minus sign in Eq. 3.35 refers to v>O, and the plus sign to v<O. 

The resultant potential-penetration profile was obtained by Many ~ al. by 

numerically integrating the complex Eq. 3.35. The potential barrier lvl is 

shown as a function of z/L, a normalized distance from the surface, Fig. 3-7. 

This profile is significant for thin films. The band diagram for the 

depletion condition (Fig. 3-lb) shows that the reduced potentials, v and ub, 

are opposite in sign. The flat-band condition exists when v(O) • O. Band­

bending continues until v(O) • -2ub. In this condition, the semiconductor is 

quasi-intrinsic since the minority carrier density equals the majority carrier 

density in the bulk (i.e., in terms of the band diagram, the Fermi level now 

lies below Ei, the midgap energy, by the same amount, ub, that it was 

positioned above it in the flat-band condition). As the band-bending 

continues ( lv(O) I > 2ub), the total inversion condition is reached and the 

surf ace undergoes a change in majority carrier type. 

Consider a film with lubl • 6 (i.e., the Fermi level lies about 0.15 eV above 

mid-gap for then-type semiconductor at room temperature). At z/L - 0.7, the 

quasi-intrinsic condition holds. Therefore, if d - 2( z/L) or approximately 

1.4, the film would appear intrinsic. Anderson observes that this situation 

corresponds physically to having the total number of carriers dominated by the 

surface trapping mechanism due to the small volume of the film. It can be 

observed further that for higher doping levels (lubl > 6), quite thinner films 

would be needed to provide the intrinsic appearance. 

An interesting situation results when the band-bending occurs at both the 

upper and lower surfaces of the film. For a sufficiently thin film, the 

conduction and valence band edges cannot reach the positions with respect to 

the Fermi level that would be expected for a corresponding bulk material with 

the pertinent doping level. This situation is illustrated simplistically in 

Fig. 3-8. It is interesting to note that if the film is thin enough, the 

band-bending can develop only to a small extent [33, 34]. As a result, the 

potential and carrier concentrations appear almost uniform throughout the 

film, and the transport properties are characterized by the less complicated 

flat-band models (e.g., Eqs. 3.22 and 3.29). 



b. Surf ace Transport Parameters 

A major effect of the band-bending phenomenon is the generation of an excess 

or a deficiency of mobile carriers within the surface region. 

quantities are defined (27] 
00 

AN =I (n-nb) dz 

and oo 

AP =I (p-pb) dz 

These 

[3.37a] 

[ 3. 3 7b] 

where p=pb exp (-v) and n=nb exp (v). Since AN and AP are surface quantities, 

they have per-unit-area units. Many ~ al. (27] solved these integrals 

numerically for accumulation, depletion, and inversion conditions. These 

parameters can be related to the carrier transport since AN and AP effect a 

change in the surface conductivity 

Aa = q(µ AN + µ AP) 
ns ps 

[3.38] 

where Aa is expressed per unit surface area, and µ.ns and µ.ps are the electron 

and hole surface mobilities, respectively. The surface conductivity change 

can be measured although it depends greatly on the nature and magnitude of the 

surf ace potential. Al though it is fairly simple to measure the surf ace 

conductance it is impossible to separate the product µ.ns AN (or µ.ps AP) 

without some further theoretical estimates. 

The surf ace mobilities, and can be calculated, and their 

relationships to the surface conditions can be predicted. The general case of 

nonparabolic bands for a nondegenerate or degenerate semiconductor has been 

treated by Juhasz (35]. For either the depletion or accumulation he showed 

that 

µ.ns 
1 -

A.nb 
--= AN Hn(v) 
~ 

[ 3. 39] 

and 

µ.ns 
1 -

A,pb 
--= AP Hp(v) 
µ.b 

[3.40] 



where np and Pb are bulk concentrations and Hn(v) and Hp(v) are functions 

which reduce to the f functions derived by Many ~al. [27] and are presented 

in Eq. 3.23 for a nondegenerate semiconductor. The dependence of JJ.ns/µ.b on 

surface potential is presented in Fig. 3-9 for both degenerate and 

nondegenerate cases. For the nondegenerate case, µ.n/µ.b decreases with 

increasing vs as expected. However, a _maximum of unity (i.e., JJ.ns=~) is not 

predicted for the vs=O (i.e., no band-bending) case. In this limit, JJ.ns 

corresponds to the surface mobility with normal diffuse scattering. For the 

degenerate film, the reasons for the mobility cusp as vs approaches zero have 

been discussed by Greene [9] and Frankl [22]. Similar electrical 

characteristics have been derived by Covington and Ray [33] and Hezel [36]. 

Anderson [6] calculated the effective mobilities for the band-bending case by 

modeling the surface region as shown in Fig. 3-10. The surface region of 

width Lc is approximated by two independent mean scattering times. The first 

is associated with bound carriers. These carriers are constrained to move in 

the surface potential well and scatter diffusely at the surface (z=O) but 

specularly at the boundary ( z=Lc). The second is associated with unbound 

electrons. These have energies above the well and are scattered at the 

surface under a flat-band condition modified by the surface potential. The 

resultant mean surface scattering times are given by: 

l/T = l/T (bound) + l/T (unbound) s s s 

1/ T • s 

(1-p)A(l+v >112 (1-p)A(l+v ) 1/ 2 

~---------s--~+ ~---------s--~ 
LcTb dTb 

[ 3. 41] 

[ 3. 42] 

When this modified surface scattering time is substituted into Eq. 3.24 for a 

surface accumulation layer, the effective mobility is [6] 

-1 
/!!_ = {1 + (1-p) A [(l/L ) + (2/d)] [l + qV /kT] 1/ 2 } 
~ c s 

[ 3. 43] 

For the more common depletion-layer at the surf ace of the semiconductor film 

[ 6] ' 



1 + (l-p)(2A/d)[l - exp(qV /kT)] 
.I!!._.. . s 
µ.b 1 + (l-p)(2}./d) [3.44] 

Eqs. 3. 43 and 3. 44 are both consistent with the expression derived for the 

flat-band situation. As Vs -7 0 and Lc -7=, these equations are identical to 

Eq. 3.29. The effects of the surface potential on the mobility are 

illustrated in Fig. 3-11. 

c. Hall Effect Parameters 

The previously derived expressions for film mobilities apply to the 

measurement of Hall mobility under smali (normal) magnetic fields. However, 

the measured carrier concentrations are surf ace scattering and thickness 

dependent, just as for the cases of mobility or resistivity, when the number 

of carriers being scattered from the surf ace is much greater than the number 

not being scattered. The relationship of this scattering mechanism to the 

magnitude of the Hall constant has been treated by Amith [37] who solved the 

Boltzmann equation for an extrinsic semiconductor with an additional drift 

field due to an applied magnetic field. The result indicates that the 

effective Hall constant, RH, is related to the crystalline quantity, RHb' 

through the expression 

where the solution of the Boltzmann equation yields 

1\(A./d) = 

QQ 

1 - 4A/d + 40./d) 11. (J./d) + f 3C}../d) 

{1 - 2}../d + (21../d)JiCA./d)}
2 

[3.45] 

[3.46] 

and f3 = f(t'11')-l/ 2 fi(}./d)df. with f1(J./d) defined in Eq. 3.23. Values for fl 
0 

and f 3 can be gained by numerical integration, and the resulting general 

dependence of ~(}./d) upon the mean scattering length and thickness is shown in 

Fig. 3-12. 



Zemel ~ al. [21, 38-40] compared the relative mobilities for a semiconductor 

film with a surface space-charge region present both without and with an 

applied magnetic field. With no magnetic field [21], 

1!!_ = 2 1 - exp(a ) erfc(a) 
1-'1, 

[3.47] 

where This expression is similar to that derived 

earlier by Petritz [ 41] for semiconductors and Schrieffer [ 42] for metals. 

With a magnetic field present, Zemel showed that [21] 

( 
') 2a 2 2 

112 
JE_ • [1 - JJ2 - (1-2a )exp( a ) erfc(a)] 
µb R 'fr 

H 

[3.48] 

where the subscript RR indicates a Hall measurement. Eqs. 3.47 and 3.48 are 

compared as functions of a in Fig. 3-13, and the difference is quite small. 

For minimal band-bending, 

expected, µ' • ~ = ,u.R_H 
potential well gets larger 

exists), a approaches zero. 

Vs approaches zero and a becomes 

for this flat-band condition. As 

large. As 

the surface 

(i.e., Vs becomes large and surface band-bending 

In this situation, (µ' /µ.b) la~o = 2a/'fr1/ 2 and 

';(µ'/µ.b)RRI ~O •a• 'l'hus, even under this extreme condition, the mobilities 

, .differ by only some 12%. 

Measurements of resistivity and Hall coefficient are necessary for determining 

of both the mobility and carrier concentration in thin films. However, 

caution must be exercised since errors in measurements can arise from specimen 

contours; electrode size, geometry, and positions; electrode symmetry; and 

spatial and thickness inhomogeneities. Weider [43] reviewed these sources of 

error for galvanomagnetic measurements and presented a useful analysis that 

can be used to either avoid these errors or correct for them. 

5. Experimental Results 

The semiconductor surf ace and its relationship to the electrical 

characteristics of the thin film have been the subject of many investigations. 

In general, such experiments are tedious and sometimes difficult to reproduce, 

especially if the films are polycrystalline. Although the thin films for such 



studies have been grown on a variety of substrates by all possible deposition 

techniques, epitaxial growth methods have been most successful for isolating 

the effects of surfaces because of fewer defect associated problems. With the 

improvements in deposition control, monitoring, and measurement for thin-film 

processing, it can now be expected that the semiconductor surface will be 

analyzed more accurately and rigorously. Among the more interesting and 

important are the recent advances in molecular beam epitaxy (MBE) [ 44-46]. 

This technique has the potential to make significant contributions to the 

knowledge of surf ace-related properties of films since it produces very thin 

films, growing them a single layer at a time, with accurate and reproducible 

electrical, structural, and physical properties. It is ~ the purpose of 

this section to present an exhaustive compendium of surface related data, but 

rather to present results which verify or demonstrate the thin-film surf ace 

analyses and modeling discussed previously. 

a. Surface Scattering 

Evidence illustrating the effects of surface scattering upon the electrical 

properties of semiconductor and metal thin films is well-represented in the 

literature [l, 36-43, 47-72]. The thickness dependence of the mobility (and 

resistivity) predicted by Eqs. 3.21, 3.22, and 3.29 has been experimentally 

demonstrated for Ge [40, 47-50], Si [36, 51-54], PbSe [38, 55], PbTe [39, 56], 

PbS [39, 57], CdS [29, 30, 58-63], CdSe [64], CdTe [65], GaAs [66, 67], and 

several other semiconductor thin films [68-72]. For the first example, Fig. 

3-14 shows the dependence of the inverse film mobility upon thickness for CdS 

films deposited at two different substrate temperatures [29]. In each case 

the mobility approaches a constant value (µb in Eqs. 3.22 and 3.29), while the 

mobility decreases significantly for films less than 1 µm in thickness. The 
0 

solid lines represent the model of Eq. 3. 29 with >. = 1100 A. For these films, 

the scattering was found to be almost entirely diffuse by comparison to the 

relationship given by Eq. 3.30. Fig. 3-15 shows that these data lie very near 

the (p+q) = 0 line [29]. 



The predicted dependence of the Hall coefficient (and carrier concentration) 

given by Eq. 3.45 has been verified for these CdS films. Fig. 3-16 presents 

these data for a number of substrate temperatures [30]. The Hall coefficient 

for each case approaches a constant value for thicker fims, with a relative 

increase for each substrate temperature observed for thinner films. By 

fitting these data in the vicinity of the knees of each of the curves in Fig.-

3-16, the dependence of the surface scattering length upon substrate 

temperature has been evaluated (Fig. 3-17) [30]. The magnitude of X varies 
0 0 

from about 680 A at low substrate temperatures to !ZOO A at higher ones. The 

more or less constant X at the extreme values is expected since the carrier 

concentrations become constant in these ranges. 

Effects of band-bend~ng upon the electrical properties of semiconductor films 

have been investigated by controlling the gaseous environment to which the 

film is exposed, thereby providing accumulation or depletion to some degree. 

Earlier studies exposed film surfaces to a variety of gases (e.g. , Oz, Hz, 

HzS) and correlated the changes in conductivity with the partial pressure of 

the gases (73-78]. These investigations are summarized in two good reviews 

·· [73, 74] and will not be covered in detail here. In some cases, the .. 
- electrical properties were reversible with gas exposure and cycling, which led 

to the development of solid-state gas sensors (79]. 

b. Field Effect Experiments 

Waxman ~ al. [3Z] demonstrated the effects of surface states on the mobility 

of CdS thin films by providing a solid interface at the CdS surface to control 

the band-bending. In these experiments the band-bending was varied by using a 

field-effect structure--similar to that of a field-effect transistor--which 

had a metal field plate electrode deposited on the top insulator. A 

controlled bias, V p, could be applied to the surf ace of the CdS, allowing 

observation of the relationship between change in band-bending and the 

measured Hall mobility. Fig. 3-18 shows the variation in Hall mobility with 

field-plate potential using a CaFz insulator on the CdS film [78}. The CaFz 

tends to cause a depletion region at the surface of the CdS. The mobility 

decreases monotonically as a function of V p, as predicted by Eq. 3. 44, for 



increasing Vs (i.e., positive and increasing VP). Fig. 3-19 presents 

analogous data for a SiO-CdS structure for which the SiO tends to cause an 

accumulation layer in the CdS with no applied bias [78]. For VP < 6V, µand 

the resistance are about constant, demonstrating for the existence of surface 

states. The charge induced into these states is immobile and the surface 

potential, Vs, is expected to be constant and independent of VP; therefore, 

the mobility should be constant as predicted by Eq. 3. 43. Above this 6V 

region the ratio of free to trapped charge increases and the surf ace mobility 

(and conductance) likewise increases. At very high VP the mobility begins to 

decrease due to surf ace scattering. 

Several other investigators used field effect structures to study the mobility 

of semiconductor thin-film surfaces [80-83]. Van Heek [80] showed that even a 

relatively small number of surface states can have a strong influence on 

mobilities and carrier concentrations of CdSe thin films, consistent with the 

models discussed in the previous sections. Ipri used the field effect 

technique to determine the electrical properties of silicon films grown 

epitaxially on sapphire [81]. Ipri varied the plate potential from negative 

through positive values, causing the silicon film surface to change from 

depletion to flat-based to accumulation. The effect on mobility is shown in 

Fig. 3-20. A maximum is observed in this characteristic curve for light 

accumulation, indicating a higher mobility near the surface, and the mobility 

decreases at higher VP due to surface scattering. This result is similar to 

that observed by Waxman (Fig. 3-19) for the CdS films [32]. For the silicon 

case, however, the mobility decreases rapidly as the depletion region widens, 

again indicating a mobility gradient through the film, consistent with the 

Anderson model (Fig. 3-10). For more negative values of V p, the mobility 

becomes constant, since the inversion condition is reached and the depletion 

width becomes about constant. Ipri also provides a theoretical analysis with 

this field-effect technique to determine actual surface concentrations and the 

gradients of the mobilities and carrier concentrations through the z or 

thickness direction of the film. 



3.3 TRANSPORT IN POLYCRYSTALLINE FILMS 

Perfect epitaxial thin films are not the usual case encountered in thin-film 

technology. Even epitaxial films commonly contain point defects and 

dislocations that can affect carrier transport. Most often, the situation is 

even more complicated. For r~asons of economics, large-scale deployment, or 

necessity film growth is confined largely to different material, 

noncrystalline substrates (e.g., on metal films for electrical contact), and 

the resulting semiconductor thin films are usually polycrystalline. 

Therefore, the conduction mechanism is dominated by the inherent 

intercrystalline boundaries rather than the intracrystalline characteristics. 

This section focuses on the 

polycrystalline semiconductor 

relationships between 

films and the 

the defects 

resulting 

found in 

electrical 

characteristics. The intercrystalline boundaries, or grain boundaries, are 

emphasized because they are the most dominant, least controllable, and perhaps 

the most misunderstood problems for the thin-film investigator. Attempts at 

producing generalized models that explain for the transport behavior due to 

grain boundaries have been unsuccessful. Although they do provide insight to 

the general physics involved, the techniques must be understood as modeling 

methods, which can predict behavior accurately only under a specific 

controlled set of experimental and material circumstances. It should be 

expected, for instance, that grain boundaries in compound semiconductor films 

are quite different for carrier transport than those in elemental 

semiconductors. Boundaries for larger crystallite films differ from those 

fore small-grained ones. Also, the physical, structural, electrical, and 

optical characteristics of grain boundary regions are drastically altered by 

exposure to impurities, diffusion, and field effects. Thus, care must be 

taken in applying or interpreting of any general analysis of grain boundary 

phenomena. Several models of polycrystalline semiconductor thin films are 

summarized here. Some expansions and explanations of the basic physical 

processes are included. Carrier transport associated with dislocations, 

stacking faults, mechanical stress, and defect types are discussed. Data 

representative of these effects are presented for elemental and compound 

semiconductors. Finally, the integration of surface scattering effects with 

defect dominated phenomena is discussed. 



1. Initial Representation Boundary Scattering 

Fig. 3-21 presents a conceptual cross section of thin film having a 

cylindrical grain structure. This geometry has been observed in many thin­

f ilm systems and is effectively represented by the scanning electron 

micrograph of the cross section of a polysilicon film shown in Fig. 3-22 [84, 

85]. It should be added that, in some film growth cases, the columnar growth 

can be interrupted and grain boundaries can occur along the z-direction of the 

film. 

A simple approach is to consider the grain boundaries represented in Fig. 3-21 

as having the major effect of controlling the carrier transport from grain to 

grain. Thus, the carriers collide at the boundaries and, .in the steady state, 

have an effective mean free path, Ag' and a mean relaxation time, 

mobility associated with this mechanism can be expressed 

= (qA )/m*v g 

The 

[3.49] 

where v is the mean thermal carrier velocity. Anderson [ 6] calculated this 

effective mobility for two cases. 

(using Fermi-Dirac statistics), 

* 1/2 
qA,g 2 -1/3 (md) µ. = (3-n--n) -

g h * 
mi 

First, for a degenerate semiconductor 

[3.50] 

* where n is the free carrier density, md is the density of states effective 

* mass and mi, the inertial or conductivity mass of the carrier. Second, for a 

nondegenerate case (using Boltzmann statistics), 

(
9'ir * )-1/2 

µ.g = qA. -' m. kT 
g 8 l. 

[3.51] 



The exact temperature sensitivities of Eqs. 3.50 and 3.51 will depend upon the 

semiconductor involved. If it has a low bandgap, Eg is more affected by 

* * temperature changes (i.e., Eg becomes more significant), and llli_ and md are 

especially temperature sensitive. Thus the mobility of a nondegenerate 

semiconductor is more likely to deviate from the T-l/2 dependence of Eq. 3.51 

for the low bandgap case. On the other hand, the temperature sensitivity of 

* the degenerate semiconductor mobility (Eq. 3.50) depends upon the ratio of md 

* to ~· Since the temperature dependence of each of these masses is 

approximately the same, only small variations in µg with T are expected. For 

either case, the masses are relatively temperature independent for materials 

with larger bandgaps. Thus µg follows the T-l/2 dependence for the 

nondegenerate semiconductor, and µg is relatively temperature independent for 

the degenerate case. Measurements supporting this simple_analysis are scant 

in the literature. In his work with PbTe, Egerton [86] reported the expected 

behavior for degenerate n-type films grown on mica. The mobility demonstrated 

was both reduced from the single crystal value as predicted by Eq. 3. 50 and 

approximately independent of temperature as expected for this low bandgap 

semiconductor. This situation is somewhat special since the boundary 

scattering model requires that the potential barriers at the grain boundaries 

be relatively small. The Egerton films fulfilled this condition since the 

grain sizes were relatively small and the material permittivity was high, 

allowing little band-bending to develop at the boundaries. This is, of 

course, similar to the surface scattering situation presented in Fig. 3-8 

[34]. 

2. Grain Boundary Potential Barrier Models: Compound Semiconductors 

Most analysis and modeling techniques correlating the transport properties 

with the polycrystallinity of thin films are based upon the consideration that 

the grain boundaries have an inherent space charge region due to the 

interface. Band-bending occurs and potential barriers to the charge transport 

result. This situation is represented schematically for an n-type 

semiconductor in Fig. 3-23. The transport properties of both metals and 

semiconductors were scrutinized using this rather simple description, and the 

reduced mobility and conductivity of the materials as compared to single 



crystal analogues were predicted. The major contributions to compound 

semiconductor thin films using this approach are now considered. 

a. The Models 

Transport Mechanisms 

One of the earliest models accounting for the conductivity in polycrystalline 

semiconductor films was that of Volger (87]. Volger based his model on that 

of an inhomogeneous conductor consisting of series-connected, separately 

homogeneous (electrically and structurally) domains of high conductivity and 

very low conductivity in which no space charge regions exist. The width of 

the low conductivity domains (i.e., the grain boundary regions) is negligible 

with respect to the high conductivity regions or grains. Thus, the situation 

simulates a polycrystalline semiconductor in which ohmic transport of the 

carriers dominates. Defining £1 as the grain size and i 2 as the boundary 

width, Volger derived the expression for the Hall coefficient 

[3.52] 

where c is an unspecified constant and RHl and RHz are the Hall coefficients 

in the grain and boundary regions, respectively. 

mobility, showing that 

He related this to the 

[ 3. 53] 

where µ 1 is the bulk grain mobility and ~b is a barrier potential relating to 

the concentrations in the grain and boundary domains. 

This analysis was followed by the perhaps most cited, theoretical analysis of 

transport mechanisms in polycrystalline thin films--that of Petritz [ 88]. 

Although his initial emphasis was directed toward the theory of 

photoconductivity in polycrystalline compound semiconductors, his 

straightforward modeling of the conductivity is applicable to a wider range of 



cases. The model differs slightly from Volger's and is based upon a 

polycrystalline semiconductor in which thermionic emission of carriers is 

prevalent. 

Petritz dealt with parameters as averages of many grains. Thus the analysis 

considered initially a single grain and a single boundary or barrier. The 

total resistivity of this case is written 

[ 3. 54] 

where the subscripts signify grain or crystallite (1) and boundary (2) 

regions, respectively. It was assumed that for the usual case, Pz >> P1; then 

the current-voltage relationship for the barrier could be expressed (analogous 

to simple diode theory) as 

[ 3. 55] 

where j is· the current density; n1 is the mean majority carrier density in the 

grains; <!lb is the potential height of the barriers; v8 is the voltage drop 

across the barrier; and M is a factor that is barrier dependent but 

independent of ()b. If the film has many barriers (i.e., small grain sizes) 

the voltage drop across any one is small as compared to kT/q, and Eq. 3.55 may 

be written 

[3.56] 

If V is the total voltage drop across the film and there are nc crystallites 

or grains per unit length along the film of length L, then 

[3.57] 

where µ 0 = M/nckT; e is the electric field; and the quantity in the brackets 

is the conductivity. Petritz observed that the exponential term in Eq. 3.57 

provided the essential characterization of the barrier. Petritz assumed that 

since Pi << P2 , the carrier concentration is ~ reduced by the exponential 

factor, but rather all carriers take part in the conduction process but with 



reduced mobility; that is, 

[3.58] 

Eq. 3.58 can be generalized to include the case in which scattering within the 

grain can be significant [ 7]. To accomplish this, µ 0 = µb (T), the bulk or 

single crystalline value. Therefore, 

It has been proposed that more cor.rectly µb= cµcryst where C is a constant and 

µc ryst is the perfect crystalline value of mobility [ 29]. Thus µb is the 

bulk-representation of the grain or crystallite mobility, which may include 

inherent defects or impurities. 

Berger [62, 87] showed that the Hall coefficient and the carrier 

concentrations also exhibit exponential dependences, similar to that of Eq. 

3.59. Berger showed that 

[ 3. 601 

and the magnitude of the activation energy, En, depends upon the relative 

concentrations in the grain and the boundary region. Mankarious [ 90] and 

others [91-94] extended this work by observing that the conductivity term in 

Eq. 3.57 should be written more generally as 

[ 3. 611 

where Ea is the conductivity activation energy. Since a= ne/Ln (for an n-type 

semiconductor) or a= p.e~ (for a p-type one), the carrier concentrations can 

be expressed by similar relationships, consistent with Berger's observation. 

Therefore, 

[3.62] 

or 

p - exp(-Ep/kT) [3.63] 



where En and EP are the carrier activation energies for n- and p-type films, 

respectively. The relationship among the conductivity, mobility, and carrier 

concentrations further predicts that 

[3.64] 

Therefore, for the special case proposed by Petritz (P1 << P2), the mobility 

activation energy is identical to the conductivity activation energy, and RH 

is constant. 

Berger expanded the Petritz model further, using a more general yet precise 

representation of the polycrystalline film (Fig. 3-24). The grain size and 

resistivity are given by J,1 and Pi and the boundary parameters by £2 and Pz· 
Thus the effective resistivity is written 

[3.65] 

Berger derived an expression for the effective mobility based upon this model, 

[3.66] 

where c = <,£2/ ,£1 )(n01/n02), and n01 and n02 are the characteristic carrier 

concentrations at infinite temperature defined from n1 (or 2) ""' no1 (or 02) 

exp ( -E 1 ( 0 
r ' 2) /kT) (see Eq. 3. 62) , in the grain and grain boundary regions, 

respectively. µ 1 is the mobility in the grain. The second term in the 

denominator of Eq. 3. 66 usually dominates, and the mobility term is often 

written in a form similar to that derived by Petritz: 

[3.67] 

Comparison of Eqs. 3.58 and 3.67 leads to two interpretations of the 

activation energies and the magnitudes of µ
0 

and µ.1• Kassing and Bax [95] 

demonstrated that in the limiting (or comparative) cases for these two models, 



and µ 1 is the mobility of the bulk single crystal. In the special case for 

which the grain size is large enough (i.e., greater than the mean free path of 

the carriers), scattering within the grain becomes important. Therefore, Eq. 

3. 68 reduces to µ 0 -:::: µ 1 = µb, and Eq. 3. 59 holds. 

Barrier Heights 

The barrier heights (or mobility activation energies) used in the previous 

models can be compared. For both the Volger and Petritz models [87, 88], 

[ 3. 691 

where n1 and n2 are the carrier densities in the grain and boundary regions, 

respectively. By comparison, Berger found that 

~E =- Ez - E1 [3. 70] 

where this difference is determined by the difference in the ratios: 

(
NA 

~E = ln -
ND grain boundary 

[ 3. 711 

and NA, ND are the acceptor and donor densities. 

Since in a more general sense than assumed by Petritz, n1 = no 1 exp( -E /kT) 

and nz • noz exp(-Ez/kT), Eq. 3.69 becomes 

[3.72] 

Substituting this into Eq. 3.58 shows that 



[ 3. 73] 

which is consistent with the Berger representation. 

Other Analytical Approaches 

Several other models for the conductivity in compound semiconductor films 

investigated produced results similar to those of Volger, Petritz, and Berger 

[96-104]. Among them are several more complicated approaches based upon 

electrical component modeling of the polycrystalline film. An example is the 

methodology of Kuznicki, whose structural model and electrical equivalents are 

shown in Fig. 3-25. The model was used to verify numerically the static 

electrical characteristics of CdSe films. The qualitative resemblance of the 

analytical and experimental characteristics is shown in Fig. 3-26. 

b. The Results 

Experimental verifications of the models discussed in the previous section, 

especially the predicted reduced mobility and its exponential dependence upon 

inverse temperature, have appeared throughout the literature. Compound 

semiconductors reported to follow these models include: CdS [29, 32, 61, 103-

115]; CdSe [64, 115, 116]; CdTe [118-121]; PbS [38, 122]; PbSe [38, 47, 52, 

122, 125]; PbTe [38, 55, 126-128]; InAs [129]; InP [92, 130-133]; InSb [134-

136]; CuxS [137-140]; SnOx [141]; SnTe [39, 142]; GaAs [ 143-147]; GaP [ 148]; 

Cuins 2 [89, 149]; CuinSe 2 [90, 149-151]; CuinTe2 [91]. 

Typical results are presented in Fig. 3-27 for CdS thin films deposited by 

resistive heating onto glass substrates. Values for q~ ranging from 0.05 to 

0.50 eV have been reported for CdS films, and this activation energy can be 

seen from Fig. 3-28 for CdS and Fig. 3-29 for CuinSe 2 to be a function of the 

deposition conditions. The relationships among the mobility, conductivity, 

and carrier concentration activation energies are illustrated in Figs. 3-30 

and 3-31. Fig. 3-30 shows the data of Mankarious for CdS thin films, from 



which E11 (0.44eV) "" En(0.33eV) + q~b(O. lleV) as predicted by Eq. 3. 64. This 

relationship has also been demonstrated for InP [ 92], Cuins 2 [89], Cuinse 2 
[90], and CuinTe2 (which is shown in Fig. 3-31) [91]. 

Expected deviations from the exponential temperature dependence of electrical 

properties reported include nonuniform grain sizes [ 61, 152] , concentration 

variations [153], and lattice and impurity scattering [39, 50, 88, 154]. For 

high temperatures Mankarious [88] demonstrated that the mobility of CdS films 

is dominated by both the impurity (see Eq. 3. 5) and lattice (see Eq. 3. 4) 

scattering (Fig. 3-32). 

3. Transport Properties: E1emental Semiconductors 

The transport properties of elemental semiconductor films (silicon and 

germanium) are considered separately from the previous section mainly because 

these semiconductors develop their extrinsic characteristics through the 

incorporation of impurity atoms rather than through compositional or 

stoichiometric effects. Two models have been used to interpret the electrical 

properties of elemental thin-film semiconductors: 

• Segregation Model--in which the impurity atoms segregate to the 

grain boundaries and are electrically inactive [155, 156]. The 

basic limitation of this model is that it fails to represent the 

temperature dependence of the resistivity. In addition, this model 

predicts a negative temperature coefficient of resistance which has 

not been experimentally demonstrable. 

• Grain Boundary Trapping Model--in which there is a large 

concentration of active trapping sites at the grain boundary which, 

in turn, captures free carriers [157-159]. As a result, these 

charge states at the grain boundaries become potential barriers as 

shown in Fig. 3-23. Similar to the Petritz and Berger models of the 

previous section, these barriers limit the transport of carriers 

between grains and the mechanism is dominated primarily by 

thermionic emission. 



The evolution of the potential at the grain boundary is an interesting 

phenomenon. In general, such grain boundary barriers are formed when the 

boundary region has a lower electrochemical potential for minority carriers 

than the grains, providing for the inflow of electrons or holes into the 

region. A space charge layer is thereby created that inhibits further flow of 

carriers. If barriers are formed in both n- and p-m.ajority-carrier-types of a 

semiconductor, the Fermi level is located somewhere near the center of the 

bandgap. Such is the case for silicon [156, 157]. However, the Fermi level 

is sometimes ~in the midgap vicinity, and potential barriers can be created 

in only one majority carrier type of the semiconductor. Such is the case with 

germanium, in which grain boundary potential barriers form only in n-type 

material [161-163]. 

a. Grain Boundary Trapping Model 

Seto [ 160] developed the most comprehensive theoretical analysis of grain 

boundary trapping based upon the physical, charge, and energy band structures 

shqwn in Fig. 3-33. Seto made the following assumptions: (1) grains are 

identical, with cross section a; (2) only one type of impurity atom is present 

(monovalent trapping) and is uniformly distributed with a concentration N/cm3; 

(3) the grain boundary thickness is negligible and contains Qt/ cm2 traps 

located at energy Et with respect to Ei; (4) the traps are initially neutral 

and become charged by trapping a free carrier. Thus all the mobile carriers 

which are in a region J,,;2 - 5 (see Fig. 3-33) from the grain boundary are 

trapped, resulting in a space charge region. Seto neglected the mobile 

carriers in this region. 

The one-dimensional Poisson equation for this region, for a p-type film, is 

5< lxl <£12 [ 3. 7 4] 

The solution of this equation yields for 5< lxl < f/2, 



V(x) = (qN/2.:) (x-6) 2 + Vvo [ 3. 75] 

where Vvo is the potential of the valence band edge (Fig. 3-33). 

Two possible conditions exist for the trap densities depending upon the doping 

concentrations: Qt > l,N or Qt < ,lN. For the former case, the grain is 

completely depleted of carriers and the traps are partially filled. Thus a-o, 
and Eq. 3. 75 yields the potential. Therefore, since p(x) = Nv exp[-(qV(x)­

Ef) /kT], the average concentration, through integration over the region 

-L/2 < x < l/2, becomes 

-(Nv)f2'lrek.T)l/
2 

(Eb +Ef) [si:J_li_ \112] 
ql \ N exp\ k.T erf 2 \2.:kr} [3.76] 

where ni is the intrinsic concentration of the single crystal and 

[ 3. 77] 

For Qt<..lN, only part of the crystallite is depleted of carriers and 5 >O. In 

this case, 

r Qt 1 2'1T£kT l/2] qQt -1/2 
= Pb 01 - f,N) + q{ ( N ) erf [-2- (2Ek.TN) ] [ 3. 78] 

where Pb = Nv exp[-(Ev0 -Ef)/kT] as in similarly doped single crystal silicon. 

It should be noted that the net effect of doping concentration and trap 

density is to vary the barrier height, q~b. This behavior is shown for an 

arbitrary case in Fig. 3-34. The variation results from the dipole layer, 

which is created by impurities and filling of the traps. As the impurity 

concentration increases so does the strength of the dipole region. Once all 

the traps are filled, however, both the width of the dipole layer and the 

magnitude of qcPb decrease, while the total charge in the region remains 

constant. 



The conductivity can now be determined using thermionic emission current 

similar to that of Petritz [86]; that is, 

[3.79] 

where VB is the voltage awlied across the grain boundary. For small VB 

(<<kT/q), the conductivity is calculated from Eq. 3.79: 

[3.80] 

Thus two solutions are obtainable, corresponding to the doping density 

regimes. Substituting Eqs. 3.76 and 3.78 into Eq. 3.80 yields 

[ 3. 81] 

and 

[3.82] 

In either case, the effective mobility from Eq. 3.80 is 

[3.83] 

In the case of polycrystalline silicon, Seto showed experimentally the 

validity of Eqs. 3.81 and 3.82 by plotting the logarithm of the resistivity 

vs. (kT)-l (158]. These data gave the predicted straight line dependence with 

slope Eg/2 - Ef for /N<Qt and Eb for /N>Qt• Fig. 3-35 presents the data for 

the mobility of Seto's polycrystalline Si films as a function of inverse 

temperature. As expected, the dependence shows a straight line with a 

negative slope (=q~b) and a deviation when qOb<kT. Seto's model also accounts 

for the Hall mobility, carrier concentration, and resistivity dependencies 

upon doping concentration for polycrystalline films (Figs. 3-36, 3. 37, and 

3.38). In each, the solid line indicates the model with a very good 

correspondence observable. 



b. Model Limitations and Refinements 

Seto [159, 160] and others [164-166] noted several basic limitations of the 

grain boundary trapping model, including: 

• Grain Resistivity--In Seto's model, the bulk resistivity of the 

grain was assumed to be insignificant with respect to the 

resistivity of the boundary region. If the grain size is large and 

the doping relatively high, the grain resistivity must be 

considered. Kamins demonstrated this effect with polysilicon doped 

above 7xl018/cm3 [157, 167, 168]. 

• Discrete vs. Distributed Energy States--Rather than the discrete or 

fixed energy assumed in the model, it is possible that the trapping 

states at the grain boundaries are distributed over some energy 

range, as has been reported for the surface states of the free 

silicon surface [169] or the Si/SiOx interface (170]. This affects 

directly the activation energy, mobility, and carrier concentration, 

especially if N ~Qt/£ (see Fig. 3-34). 

• Depletion Region Free-Carrier Density--In some cases (e.g., large­

grain polysilicon), the carrier concentration in the space-charge 

layer can become appreciable, leading to inaccurate values of the 

barrier heights calculated by the Seto model. Since µg depends 

exponentially upon q~b' significant variances can result. The 

carrier concentration is more sensitive to the shape of the barrier 

in the depletion region and is less affected by changes in the 

magnitude of the barrier height. 

• Energy Level of Interface (Trapping) States--The Seto model predicts 

(depending upon impurity type) that the trapping states are located 

in either the upper or lower half of the bandgap--excluding the 

midgap position [164, 166]. 



• Trap Population--A major assumption of the Seto model, that 

available grain boundary traps in the bandgap are always filled, is 

not universally true. 

Several modifications to the Seto model have been proposed by Baccarani ~ al. 

[ 164]. Directed toward clarifying the model for the intermediate range of 

impurity concentrations, their work considers two trapping cases: (1) 

monovalent trapping states; and (2) continuous distribution of trapping states 

within the bandgap. 

Monovalent Trapping States at the Grain Boundary 

For the case of monovalent trapping states at the grain boundary, Baccarani ~ 

al. assume the existence of Nt acceptor states (using an n-type semiconductor 

analogous to the Seto p-type situation) with energy Et with respect to Ei at 

the interface. For a given set of ,l, Nt, and Et there is an impurity 

* . * concentration, N0 , such that if N0 ~ less ~ N0 , the grains are entirely 

depleted. Two possible impurity conditions exist: 

* (i) For ND < ND, the energy barrier is given by [164] 

[3.84] 

and the conductivity becomes 

[ 3. 85] 

where v = (kT/2'1Tln*)l/Z and the activation energy is given by 

[3.86] 

(ii) 

[164] 

* For Nn>ND, the grains are partially depleted and the barrier height is 



[ 3. 87] 

which must be solved iteratively. Two solutions for the conductivity can be 

calculated corresponding to two energy regions. 

[ 3. 88] 

and 

[ 3. 89] 

where n
0 

is the concentration in the neutral region neglected by the Seto 

treatment. The latter energy region (Eq. 3.89) also had not been covered by 

Seto's approach and solution. 

Fig. 3-39 represents the calculated activation energy as a function of ND for 

several trap densities. The grain sizes are assumed to be 0.1 µm, and the 

dashed line indicates the boundary between the two energy regions and their 

respective solutions (Eqs. 3.88 and 3.89). For lower values of Nt, an abrupt 

transition in Ea occurs (between Eg/2 and Eb) at the onset of complete 

depletion. However, for larger Nt' Ea becomes more continuous. For either 

complete or incomplete depletion, Ea approaches (Eg/2) - Ef for the condition 

given by Eq. 3.87. 

Continuous Distribution of Trapping States 

For the comparative case of a continuous energy distribution of interface 

stat es, Ni (expressed in units of cm-2ev-l), acceptors are assumed to be 

uniformly distributed in the upper half of the bandgap and donors in the lower 

half. Baccarani et al. solved the charge neutrality equation for this 

situation to determine the effective space charge region width and the 

position of the Fermi level in terms of the barrier potential, doping, grain 



size and interface state density. 

* (N0<Nn) [164], 

with 

For complete depletion of the grains 

[3.90] 

[ 3. 91] 

* Corresponding to incomplete depletion (N0>Nn and the space charge region width 

<ii 2) [ 164] , 

[ 3. 92] 

with 

[ 3. 93] 

Fig. 3-40 shows the calculated activation energy versus ND for the distributed 

interface state case with the same basic parameters used to determine Fig. 3-

39, the comparable discrete situation. For smaller impurity densities, Ea 

~pproaches Eg/2 and for higher impurity concentrations it is proportional to 

Nn 1• Both these limits correspond to monovalent trapping states. However, 

the transition between these two limits is more extended in the present case, 

with the abrupt transition between complete and partial depletion always 

occurring, even at high Ni. 

Baccarani ~ al. performed Hall studies on sputter-deposited polycrystalline 

silicon films implanted with phosphorus. Their results indicate some impurity 

segregation at the grain boundaries and the presence of an interface-state 

peak located at midgap. Fig. 3-41 presents their activation energy data, 

taken as a function of phosphorus concentration. The solid line indicates the 

monovalent trapping state model, fitted to the experimental data by adjusting 

Nt to 3.9x1012/cm2• The model based upon the continuous distribution of 

interface states failed to fit the experi~ental data. 



c. Grain Boundary Potential, Concentration Problems 

Three major problems associated with the quality and nature of the 

polycrystalline semiconductors--especially silicon--have impeded the exact 

interpretation of the results of transport studies. The first is the 

uncertainty in the actual, total doping of films. This is especially true of 

the chemical vapor deposition process, in which uniform accurate control is 

difficult. However, even in the case of ion-implanted films, such as those 

used by Baccarani ~al. [164], the post-implantation high-temperature anneals 

necessary to minimize high energy damage can cause impurity diffusion, 

especially to grain boundary regions. The second problem is the uncertainty 

in impurity concentration, which varies with film thickness [ 157, 171]. The 

third problem concerns the contamination of the grain boundary by gases 

inherent to the film growth procedure. Although film processing techniques 

can minimize this risk, the large grain boundary surf ace-to-volume ratios in 

polycrystalline thin films magnify the problem. 

In order to avoid such complications, Seager and Castner (165) characterized 

the electrical transport 

polycrystalline silicon [172). 

properties of neutron-transmutation-doped 

Their samples had larger grain sizes, with a 

minimum 25 µm diameter. The electrical measurement techniques included four­

probe and traveling-potential probe measurements carried out as close to zero-

bias as possible. For very univorm controlled samples, Seager and Castner 

observed that the resistivity was linearly dependent upon inverse temperature­

-as previously observed (157-160)--below a doping level of approximately 

2x!o15/cm3 of phosphorus. The activation energy was nearly the midgap value, 

O.SSeV. However, above 2xlo15/cm3 doping, deviations from linear dependence 

were observed (Fig. 3-42). Potential probe measurements made on these more 

highly doped polysilicon samples indicate that a large range of grain boundary 

impedances exist (i.e., a variety of grain boundary barrier heights are 

present). 

Seager and Castner examined the mechanism for current flow in the presence of 

grain boundary potential barriers. The grain boundary potential was 

represented analytically under three different conditions for the interface or 



defect state density, Ni: 

• Energy-Independent N1 

[ 3. 941 

where, AEf • Efg - Efb' the Fermi levels in the grain and boundary regions, 

respectively, measured from the valence band edge; and a= 8£Nn/q 2Nt, with Nn 

the doping level and Nt the two-dimensional density of defect states. 

• Monoenergetic N1 
In this case, a closed-form solution is not obtained, but 

[ 3. 951 

which can be solved using iterative techniques. 

• Exponentially-Dependent Ni 

A transcendental equation also results, 

[ 3. 961 

where Nt = NTo exp(-Efb/E0 ) and N0 and E0 are adjustable parameters. 

These three cases for Ni are summarized in the band diagram of Fig. 3-43, with 

the parameters used in Eqs. 3.94, 3.95, and 3.96 to fit the zero-bias data 

specified. Fig. 3-44 presents the dependence of q~b upon N0 for the three 

interface density cases, using the fitting parameters determined by Seager and 

Castner [165). The exponential density-of-states model fits the data somewhat 

better than the single trap model and the energy independent Ni model, has the 

poorest agreement. These comparisons indicate that the largest grain-boundary 

state densities consist of 6xlo11/ cm2 available electron states located 

within O. 2eV of the midgap position. This is lower than the corresponding 

value of 3xlo12/cm2 in the Seto and Baccarani polysilicon (160, 164). which is 

ascribed to the extrinsic quality (probably due to contamination) of the grain 

boundary states. 



Seager and Castner correlated their results with the effects of doping 

concentrations on the electrical transport in polysilicon. 

interest, based upon Fig. 3-42, include: 

The regions of 

• ND ~ 1014 I cm3--The majority of the barriers in the polycrystalline 

silicon are characterized by q<)b = O. SSeV, and the resistivity is 

dominated by this activation energy. 

• 1014 < ND < 2xl015/cm3--A substantial number of barrier heights are 

less than O. SSeV, but the largest q<)b still dominate the 

resistivity-temperature dependence. 

• ND > 2xlo15/cm3--A range in barrier heights exists, and the 

magnitude of the resistivity activation energy depends upon the 

physical features of the sample and the analysis technique. A major 

problem of the shape of the grain boundary density of states 

function still exists. Seager and Castner propose that a careful 

(but difficult) measurement of the I-V characteristics of individual 

grain boundaries would provide this information. 

4. Grain Boundary Measurements 

Although some research has focused directly on the electrical and associated 

properties of individual grain boundaries [161, 173, 180], the literature-­

including a detailed overview by Matare [173]--has been scant in synthesizing 

such data with either the modeling results or the broader application aspects 

of the polycrystalline films. However, it is becoming more evident that such 

research and correlations are now necessary, especially with the potential 

markets provided by the large-scale deployment of thin-film solar cells and 

other polycrystalline semiconductor devices [181, 182]. 

Cohen et al. reported on the carrier transport at twin and low-angle 

boundaries in MBE-produced GaAs [ 183]. This work is representative of the 

synergistic approach mentioned above. They reported the measurement, by 

scanning Auger spectroscopy, of the resistivity of single-grain and twin. 



boundaries in controlled gallium arsenide samples based upon spatially­

resolved potential techniques. 

In their experiment, two ohmic contacts were deposited such that a single­

grain boundary was located perpendicular to these (Fig. 3-45). Auger electron 

spectroscopy is ordinarily used as a surface chemical analysis technique since 
0 

the escape depths of the analyzed Auger electrons usually are less than lOA 

[184]. However, Cohen ~al. utilized this surface constraint along with the 

fact that the emitted Auger electron has a characteristic energy relative to 

the potential of the host atom with the analyzer referenced to ground. If the 

sample is biased, however, the entire Auger spectrum is shifted by an energy 

proportional to the known bias voltage [ 183]. Cohen ~al. applied a voltage 

between the two ohmic contacts and used the energy shift of the carbon Auger 

peak (272eV) as a spatially resolved contactless voltmeter [183]. The carbon 

line was chosen for its sharpness and the fact that the element occurs on any 

surf ace exposed to air. 

Fig. 3-46 shows the result for a lightly doped sample and a 6V bias with a 

·resulting 6xl0-4 A current. From the grounded contact, the voltage increases 

linearly across the sample until the vicinity of the grain boundary. In this 

region an observable change in slope, representative of the grain boundary 

resistance, is seen. Beyond this region, the slope continues to increase 

linearly with its original slope. 

The increase in voltage at the grain boundary in Fig. 3-46 corresponds to a 

region more than 3 µm in width, which represents the depletion width of a 

diode fabricated from such lightly doped material. Cohen et al. note that the 

Fermi level of the GaAs is probably pinned at the grain boundary by interface 

states. Band-bending on both sides of the interface would result, forming a 

double-depletion region (shown in Fig. 3-47). When a potential is applied to 

the sample, the major portion appears across the depletion region at the grain 

boundary as long as the grain resistivity is moderate. The resistivity of the 

grain boundary shown in Fig. 3-46 was calculated to be 3. 3xl0-4 f?-cm2 , which 

is consistent with that reported by Dapkus ~al. [185]. 



.• 

5. Generalized Hall Parameters for Semiconductor Thin Films 

Hall effect measurements are the most common technique used in determining 

thin-film mobility and carrier concentration. Several interpretive problems 

that can arise from such measurements have been discussed by Seager and 

Castner [165]. Recently, a phenomenological theory of the Hall effect in 

polycrystalline semiconductors, providing for a general and reasonable 

interpretation of results, was reported by Jerhot and Snejdar [ 186]. Their 

approach models the film as depicted in Fig. 3-48, which also shows that the 

detailed electrical equivalent circuit of the film is compatible with previous 

analogies [94-99]. Jerhot and Snejdar provided a complex analysis of this 

model, with the resultant Hall coefficient given by 

J (V 1 V ) + 1] + RB2Dl [3.98] 
2 DB' oB ~ 

where the various parameters are defined in Fig. 3-48 and Table 3-1. 

This generalized approach can be used to generate the analytical results 

presented previously [ 85-87, 158, 187]. Jerhot and Snejdar have shown that 

the proper expressions for µ.8 and Rug are obtained from Eqs. 3.97 and 3.98 for 

the limiting cases derived by Volger, Petritz, Berger, and Seto [85-87, 158]. 

In line with previous discussions of the Hall effect [43, 187], they conclude 

from their modeling analysis that: 

• In polycrystalline semiconducters, the Hall mobility measured should 

never be equated with the conductivity mobility [86] even if the 

Hall coefficient is known. Thus, the physical parameters associated 

with the charge transport cannot be calculated directly from µ.H 

measured under the condition of zero current through the Hall 

contacts. 



• In general, a smaller value of Hall mobility is measured in 

polycrystalline semiconductors as a result of the smaller number of 

carriers that transfer charge between current contacts as compared 

with the potential barrier-free case. Their predicted barrier 

height effects on mobility and carrier concentration are shown in 

Fig. 3-47. 

6. Minority Carrier Properties 

Some attention has been given to problems and mechanisms of recombination of 

minority carriers at the grain boundaries of polycrystalline thin films [188-

195]. Much of the effort has been devoted to understanding the processes of 

minority· carriers at grain boundaries in order to improve thin-film device 

performance and lifetime. Since a major concern involves thin-film solar 

cells, the behavior of the minority carriers both in the dark and under 

illumination has been discussed. 

a. ,Grain Boundary Model and Di.ffusion Potential 

Card and Yang [188] systematically developed the dependence of the minority 

carrier lifetime, t , on the doping concentration, grain size, and interface 

state density at the grain boundaries in polycrystalline silicon. Other 

semiconducters have been likewise characterized, using the Card and Yang 

approach [188-193]. 

Fig. 3-50 represents the band diagram of the region surrounding a grain 

boundary in an n-type semiconductor. For the dark case (Fig. 3-SOa), the 

states are filled (in equilibrium) to the Fermi level, and the band bending 

occurs in order to preserve charge neutrality. In the usual case, the width 

of the grain boundary (w) is much less than the width of the depleted region 

(2d') thus balancing the charge 

[ 3. 99] 



where Qi is the net negative charge contained in the interface states, and Qd 

is the net positive charge in the depletion region. Letting Ev(O)==O, these 

charge densities are expressed [188, 189] 

[ 3.100] 

and 

[3.101] 

where E is the semiconductor permittivity; !bb is the diffusion potential; Nd 

is the density of states (i.e., doping concentration); and Ni is the grain 

boundary interface state density with units cm-2ev- 1• The diffusion 

potential, ebb, can then be calculated by using these relationships in Eq. 

3.99. A similar relationship can be obtained with a model for a p-type 

semiconductor. Fig. 3-51 shows the dark diffusion potential for p-type 

CuinSe2 as a function of the grain boundary interface density for various 

carrier concentrations. The interface state densities correspond roughly to 

the following grain boundary types: 

• Ni>1013/cm2-ev High-angle grain boundaries 

• Ni<101 1/cm2-ev Low-angle grain boundaries 

For a solar cell under illumination, the interface states adjust their charge 

by an initial net capture of holes (n-type semiconductor) or electrons (p­

type). This, in turn, reduces the diffusion potential to a value q~b' which 

is -O.l q~b and results in the maximum recombination rate. The grain boundary 

region under illumination is shown in Fig. 3-SOb. 



b. Recombination Velocity and Minority Carrier Lifetime 

In the case of a solar cell material under illumination, the recombination 

velocity, S, of the minority carriers at the grain boundary can be estimated 

in a straightforward manner. The recombination current is defined [196] 

Jr ... qSop~ 

== qSoPo 
[3.102] 

where the subscript o indicates x-0; p~ is the excess concentration; and p0 is 

the equilibrium concentration which can be expressed p
0
=p(d') exp(q~b/kT) from 

Fig. 3-50b. If p0 =::: n0 , the recombination current is given by [197] 

[3.103] 

where a is the capture cross section and v is the thermal velocity of 

carriers. The recombination current at the edge of the depletion region has 

been calculated [188] as 

Jr =::: qSp(d') [3.104] 

And, combining Eq. 3.104 with Eqs. 3.102 and 3.103 

[3.105] 

Thus the diffusion potential, $b, enhances the recombination at the grain 

boundary. 

The dependence of S upon q~b for various Ni is presented in Fig. 3-52 for 

CuinSe2 (a= 2xlo- 15/cm2 , v = 107cm/s, Efn-Efp =::: O.SeV). For NA=::: 1016/cm3 , 

q~b =::: 0.13eV. Thus for high-angle grain boundaries (~i > 13/cm2-ev), 

recombination velocities in excess of 106cm/s are expected. 

The minority carrier lifetime can be calculated for a film with columnar-grain 

geometry. In this case, the volume recombination center density is [188] 



[ 3. 106] 

where N is the surface density at x=d' (i.e., from examination of Eq. 3.105, 

S = N v or N = (l/4)(Efn-Efp) Ni exp(q~b/kT). Therefore, 

Therefore, for a p-type semiconductor, the minority carrier lifetime is 

[ 3.1081 

This dependence is shown in Fig. 3-53 for CuinSe 2• For the high-angle-grain 

boundary case, with typical 10-4cm grain size, the minority carrier lifetime 

is in the 10-9-10-lO s range, which is more than one order of magnitude lower 

than that reported for the corresponding single crystal. 

The validity of these calculations has been verified for the CuinSe 2/CdS thin­

f ilm solar cell [ 189, 191, 198] and by comparison to the cylindrical grain 

model (see Chapter 7). Rothwarf and Barnett [199] used a geometrical argument 

to account for grain boundary recombination. Simply, all carriers generated 

closer to the grain boundary than the collecting site (i.e., the junction in 

the case of the solar cell) are lost. A good correspondence has been 

demonstrated [190] between the collection efficiency evolving from the 

minority carrier lifetime model (Eq. 3.108) and that derived by Rothwarf and 

Barnett. 

Leong and Yee [200] recently reported a standard photoconductance measurement 

for determining the intragrain recombination velocity of excess charge 

carriers in large grain size materials. This technique is similar to that 

described by Wang and Wallis [201] and simply monitors the current passing 

perpendicular to the grain boundary. The analysis assumes that the incident 

light is absorbed entirely on the surface parallel to the grain boundary but 

in the grain itself. Thus no excess carriers are generated in the boundary 



region. Leong and Yee' s analysis of the simple bicrystal case shows that: 

(i) if the grain size, I , is much larger than the diffusion length, L, the 

excess carrier lifetime in the polycrystalline material is not distinguishable 

from that in the comparable single crystal (i.e., having the same bulk and 

surface properties); and (ii) as the intergrain recombination velocity 

increases, the effective lifetime tends to saturate. 

c. Minority Carrier Mobility in Polycrystalline Thin Films 

Yee [202] has provided some insight into the behavior of minority carriers in 

polycrystalline semiconductors. Yee used the simple model shown in Fig. 3-54, 

similar to those of other investigators, in which the grain boundary is 

inverted with respect to the grain majority· carrier type to estimate the 

minority carrier mobility. Considering the regions on each side of the grain 

boundary (labeled in Fig. 3-54), the carrier concentrations can be written for 

each 

Region 1: p(x) = Pno + A1 exp(-x/LP) + A2 exp(x/LP) 

p(x) = Pno exp(q~e/kT) 

with boundary conditions: 

p(x) ,.. Pno 

Region 2: p(x) = B1 exp(-x/LP) + Bz exp(x/LP) + Pno 

p(x) = Pno exp(q~c/kT) 

with boundary conditions: 

p(x) = Pno 

[3.109] 

x = /,/2-N/2 

x - 0 

[3.110] 

x = j,/2+w/2 

x == i, 
where the effective quasi-Fermi levels, ~e and "1c' are defined in the band 

diagram of Fig. 3-55. From Eqs. 3.108 and 3.109 and the boundary conditions, 

the diffusion equations are derived: 

J = - qD !f. I I w 
1 pax r-r 

= -(qDpPnofLp)[exp(qi/le/kT) - l] tanh(l/2Lp) 

and likewise 

J2 = (qDppn0 /Lp)[exp(qi/lc/kT) - l] tanh(f/2Lp) 

[ 3. 111] 

[3.112] 



It can be observed from Fig. 3-55 that I/le = -(V- V) = V-1/lc. It has been 

previously shown that [162] 

exp(q~V/kT) = 2[1 + exp(qV/kT)]-l [ 3.113 J 

Therefore, the minority carrier current can now be derived by substituting Eq. 

3.113 into either Eq. 3.111 or Eq. 3.112, making use of the relationships 

between the quasi-Fermi levels and ~V and V. Thus, 

This can now be combined with the majority carrier current density derived by 

Seto (Eq. 3.80) to give the total current. Assuming qV/kT << 1, 

J = navq€(q£/(2'11"1n*kT) 112 exp(-q~b/kT)] 
+ p0 q€£ CaL/2LP) µ. tanh(£/2LP)] [3.115] 

l 
where Pn = (1/,£) J p(x)dx, a= Pn

0
/p and µ. is the minority carrier mobility 

due to bulk and i~urity contributions (i.e., µ.-l =µ.bl + ,u.i 1). But, since 

[194, 195] 

[3.116] 

the mobility can be obtained using Eqs. 3.115 and 3.116: 

[3.117] 

[3.118] 

Therefore the effective minority carrier mobility can be written [16] 

[3.119] 

Or, solving for µe using Eqs. 3.118 and 3.119, 



[3.120] 

where L = (2Lp)/[ atanh(.£/2Lp)] and LP= [(kT/q)µ.T ]112 in which tis the 

lifetime associated with µ.. 

Yee extended this analysis to approximate the effects of grain size and 

interface (grain boundary) recombination velocity, S, on the minority carrier 

diffusion length. Tite effective diffusion length is defined 

[3.121] 

where the lifetime is given by the bulk, impurity, and the interface 

lifetimes, tg• 

l/'teff = l/T + l/Tg [ 3. 122] 

Since [186] 

[3.123] 

Combining Eqs. 3.121 and 3.123 with the expression for the recombination 

velocity (Eq. 3.105), the behavior of the effective diffusion length with 

grain size and S can be estimated. Fig. 3-56 shows such an analysis for CdTe. 

Yee has shown some correlation with experimental data, as presented in Fig. 3-

56. 

7. Composite Models and Other Effects 

a. Surf ace and Grain Boundary Scattering 

For semiconductor thin films, the carrier transport can be determined by more 

than one mechanism. Tite composite influence of the surf ace scattering 

mechanisms discussed in Section 3.1 and of the grain boundary scattering 



mechanism presented in Section 3. 2 have been reported in the literature [ 7, 

29, 56]. Considering the additive nature of noninteracting scattering 

mechanisms, the effective film mobility may be written 

[3.124] 

By incorporating Eqs. 3.28 and 3.~9 into Eq. 3.124, one obtains [29] 

[ 3. 125] 

An examination of Eq. 3.125 as a function of film thickness shows that for 

d >>A., the effect of surface scattering becomes negligible, and the mobility 

approaches a constant value since JJo and µ.g do not depend upon thickness for a 

uniform film. However, if the thickness is of the order of magnitude of the 

mean surface scattering length, A , the mobility is reduced. This composite 

effect was already shown in Fig. 3-14 for CdS. From these data, A. can be 

calculated from the thickness-dependent portions of the curves and q~b and µ.b 

can be evaluated from the constant mobility, thicker film portions. 

Waxman et al. [ 32] developed a composite description of the behavior of 

polycrystalline films in their field effect experiments (Section 3-1). The 

effective barrier height, q~', of the grain boundaries was calculated for a 

change in the carrier density and a surf ace depletion region of width Lc due 

to the band bending. Thus [32] 

[3.126] 

where n1 and n2 are the original carrier densities in the grain and grain 

boundary, respectively (see Eq. 3.69), and ~n is the induced concentration. 

From this, the change in barrier potential can be calculated to be 

where 

(q~) = q~-q~ I 

= - kT ln [(l+avp)/(l+i9Vp)] 

a = 9 Ei/qdi Lcnl 

f3 ,,. 9Ei/qdiLcnz 

[3.127] 



and €i is the permittivity of the insulator in the field-effect structure; di 

is the insulator film thickness; and e is the ratio of induced free charge to 

trapped charge in surface states and traps (= q~di/£iVp) [32]. The film 

mobility becomes 

l+,SV 
µf • (C/kT)[l+aVP] exp(-q~/kT) 

p 
[ 3.128] 

where C = qv/4n1• The effective film mobility is predicted to rise as a 

function of VP, as shown in Fig. 3-57 for various values of e. The composite 

effect on inverse temperature is presented in Fig. 3-58, in which the field­

injected excess charge reduces the barrier height by counteracting the 

depletion of charge at the grain boundary barriers. 

b. Other Contributions 

Dislocations 

Semiconductor thin films tend to have large concentrations of defects due to 

the growth processes [l, 211], to lattice mismatches between layers [203-206], 

to differences in thermal expansion coefficients between adjacent films or 

substrate and film [204], and to stresses [205-208]. Surface defects on the 

substrate or underlayer film can also extend into subsequently deposited 

layers. The most common among these defects is the dislocation [211]. 

Overviews of the relationship between dislocations and the electrical 

characteristics of semiconducters are reported by Broudy [212], Read [213], 

and Matare [173]. 

Dislocations, like grain boundaries, provide charged deformation regions for 

carrier scattering. The mobility dependence upon temperature can be written 

[212] 



[3.129] 

where the first term corresponds to charged-imperfection scattering and the 

second term to deformation scattering of the carriers, with c1 and c2 
temperature independent constants. Broudy [212] and Dexter and Seitz [214] 

derived the mobility contribution due to scattering from a uniform 

distribution of noncharged dislocations, 

[ 3. 130] 

where Y "" (3'7T/32)(E2b2m*/hq)[ (l-2v) I (1-v) J2 ; b is the dislocation Burger's 

vector; vis Poisson's ratio; and E is the deformation potential. Tile effects 

of dislocations on the electrical properties become more important in thicker, 

single-crystal films in which grain boundary and surface scattering mechanisms 

do not dominate the transport. 

Stacking Faults 

Another intragrain defect is the stacking fault, a planar defect which results 

from the multiple nucleation and subsequent growth to continuity for thin 

films [215]. A number of investigations of the electrical properties of these 

defects have been published [216-222]. Brown [216] treats the scattering of 

plane-wave electrons from the stacking faults, which are represented as 

constant potential surfaces. He derives an expression for the resistivity of 

such defects in semiconductors as 

[3.131] 

where fJ is the linear fault density; E = n2k2/2m*, the average electron 

energy; and R is the average value of the reflection coefficient for all 

faults. 



The effects of stacking faults on electronic transport have also been modeled 

similarly to the grain boundary that is, for a sufficiently faulted film [220] 

[3.132] 

After relating the resistivity is related to the mobility and an anisotropy in 

the carrier concentration is assumed, the film mobility can be expressed [220] 

[ 3.133] 

where m is a stacking fault count density (faults/ grain) and q~sf is the 

stacking fault potential barrier. If m=O, Eq. 3.132 reduces to the grain 

boundary-dominated model given by Eq. 3.125. It should be noted that the 

value of m depends geometrically on the relative orientation of the stacking 

faults and the grain boundaries [ 2 21 J • The validity of Eq. 3. 132 has been 

demonstrated for highly-faulted CdS films that have some degree of grain 

misorientation. For these films, the fault densities were found to be 103-

106 /cm, with 5-15 faults/grain. The magnitude of q~sf was estimated to be 

0.035eV. A substrate temperature dependence of the fault density was reported 

with highest densities, corresponding to minimum film mobilities, occurring at 

~Tsub=220°C for glass substrates [221, 222]. 
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Table f. Summary of Generalized Hall Effect Parameters for a 
Polycrystalline Semiconductor [ 187]. 

d = G 

d = B 

RN = 

i 1 = grain size 

i 2 = grain boundary width 

resistance of one current path formed 
by interconnected grains and grain 
boundary regions (see Fig. 3-48). 

L08= effecti~e Debye length in grain bound­
ary region v. 

crp =conductivity of polycrystalline semi­
conductor 

cr8b= bul~ conductivity of grain boundary 
region 

2r 
Ji(Vl ,V2) = -(q/kT) J [exp {qV/kT)/F1{V,Vas)ldV (i = l or 2) 

vl 

F1 (V, v08 )= ± l 2[ exp(qV/kT) - exp (qV08tkT) + (q/kT) (v08-V) f' 
where + correspond$ to V<O 

- corresponds to V>O 

D = D/Ds 

Du = det (A1n; Rm,n) 

Os = det (Rm,n) 

m = 2,3,4 

m = l,2,3,4 

R is a SY111T1etrical square matrix with: m,n 

n = 1,2,3,4 

n=l,2,3,4 

Rl ,1 = RG + 2(RGBOG + RGBOB) + RBl + RB2 Rl ,2 = R2,l= Rl ,3 = R3,l = -(RGBOG = RGBOB) 

Rl,4 = R4,l = -(RBl + 2RGBOB); R2,2 = R2,3 = RGBOG + RGBOB + RGBD 

R2,3 = R3,2 = O; R2,4 = R4,2 = R3,4 = R4,3 = RGBOB; R4,4 = RT + RBl + 2RGBOB 



Al,2 = A1,3 = -~RHBbaBbdB (2Loafds)
2 

JlB(VDB'VXB) J2 (VDB'VOB) -
2 

RHGb ((dB + dB) LDG/RNdG] JlG (VDG' VXG) 

Al,4 = -RHBbaBbdB (2Loalda)
2 

JlB (VDB'VOB) J2 (VDB' VOB) 

where subscripts Band G on current densities refer to grain boundary and grain. 

respectively. VXG and VXB are the diffusion potentials at the edge of the space­

charge layers in the grain and grain boundary regions, respectively. 
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Fig. 3-3 Ratio of average film mobility to bulk mobility as a function of 

the ratio of film thickness to mean surface scattering length using 
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semiconductor case of Eq. 3. 21) and Boltzmann statistics (broken 

lines, representing nondegenerate semiconductor case of Eq. 3.22). 

The effects of specular and diffuse scattering are shown by the 

difference in the specularity factor, p. The dots represent the 

approximate solution given by Eq. 3.29 (from Anderson [6]). 
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Fig. 3-8 Effective band structure resulting from band bending at surfaces in 

a very thin semiconductor film. 
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Anderson [6]). 
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indicate the model of Eq. 3. 29 with A •1100 A for the CdS films 
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layer (from Waxman ~ al. [ 32]). 
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Fig. 3-21 Conceptual cross-sectional view of polycrystalline thin film 

indicating a degree of columnar growth. 
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Fig. 3-22 Micrographs showing columnar growth in silicon: (a) 

Polycrystalline silicon film grown by chemical vapor deposition 

(from Chu !!_al. [84]); (b) multicrystalline silicon produced by 

casting (from Helmreich [85]). 
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Fig. 3-23 Energy band representation of n-type polycrystalline semiconductor 

thin film with grain size 11 and grain boundary width 12• Grain 

boundary barrier potential is q~b· 
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Fig. 3-25 Electrical model of polycrystalline thin film. Ra and RM are the 
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(from Kuznicki [96]). 



(V) mV 
Uexp Ucal. 

2200 

1 2 

I 

I 
I 

I 

Fig. 3-26 The comparison of the experimental and calculated (using the model 

of Fig. 3-25) barrier voltage, Ub, and grain voltage, UM, as a 

function of the total voltage, V. Solid line indicates 

experimental data for CdSe and broken line, the calculated values 

(from Kuznicki [96]). 
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(c) is identical to (a) but at a high deposition rate (from 

Kazmerski et al. [29]). 



300° c 200° c 100° c 20° c 
102 r----....,...-----.----------...----.-----------------

..-.. 
CJ 
CJ) 
en 
I 

> ........ 101 N 

E 
CJ ...... 
t» 2 ::l. 

10° __________ .__ ________ ~ ________ ._ ________ _, 
1.5 2.0 2.5 3.0 3.5 

T-1 (103/K) 
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330 C (603 K) (from Berger [89]). 
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conductivity of a CdS film as a function of reciprocal temperature 

(from Mankarious (90]). 
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Fig. 3-32 Mobility variation as a function of temperature for CdS thin film 

at elevated temperatures, indicating lattice scattering (-T-3/Z) 

and impurity scattering (-T312 ) regimes (from Mankarious [90]). 
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Fig. 3-33 Model for structure of polycrystalline film: (a) generalized 

structure, (b) charge distribution, and (c) energy band structure 

(from Seto (160]). 
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Fig. 3-34 Functional dependence of the potential barrier height on doping 

concentration (from Seto [160]). 
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Fig. 3-44 The largest grain boundary barrier heights (T•O) as a function of 

doping density for neutron transmutation doped polycrystalline 

silicon. Open circles are data from small-area potential profile 

experiments and solid circles are four-probe resistivity data (from 

Seager and Castner [165]). 



Fig. 3-45 Electron micrograph of a 20 µm long GaAs sample containing a single 

grain boundary (from Cohen~ al. [183]). 
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Fig. 3-46 Auger potential profile of a lightly-doped GaAs sample containing a 

single grain boundary (from Cohen ~ !.!.· [ 183] ). 
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Fig. 3-47 Band diagram illustrating band-bending at grain boundary in GaAs: 

(a) in equilibrium; (b) with applied voltage (from Cohen ~ al. 

[183]). 
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Fig. 3-48 Assumed structure of polycrystalline semiconductor for generalized 

Hall effect analysis and equivalent electrical circuits. Subscripts· 

G~ R, and b refer to grain·, grain boundary and bulk, respectively (from 

Jerhot and Snejdar [187]). 
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Fig. 3-49 Effect of barrier height on: (a) Hall coefficient, and (b) Hall 

mobility in polycrystalline semiconductor with nb = 1016/cm3, 

/ 1(=dg) = 10-S cm, / 2(=db) = 10-7 cm, and µb = 10 cm2/v-sec (from 

Jerhot and Snejdar (187]). 
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Fig. 3-50 Energy band diagram of the grain boundary region for an n-type 

semiconductor. (a) Dark case and (b) illuminated case. q<)b and 

q<)b are the dark and light diffusion potentials, respectively (from 

Kazmerski [189]). 
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Fig. 3-51 Dark diffusion potential dependence on interface state density for 

various carrier concentrations in p-type CuinSe2 (from Kazmerski 

[189)). 
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Fig. 3-52 Dependence of the recombination velocity upon 

diffusion potential and interface state density 

" 100 mW/cm~ illumination (from Kazmerski [189]). 
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Fig. 3-53 Dependence of minority carrier lifetime on grain diameter for 

various interface state densities in CuinSe 2 • Dashed line 

indicates single-crystal value of lifetime (from Kazmerski ~ al. 

[ 190]). 
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Fig. 3-54 Energy band model used in calculating minority carrier mobility for 

an n-type polycrystalline thin film (from Yee [202]). 
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Fig. 3-55 Detailed band diagram in vicinity of grain boundary (from Yee 

[202]). 
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Fig. 3-56 Diffusion length of CdTe as a function of grain size for several 

grain boundary recombination velocities (from Yee (202]). 
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Fig. 3-57 Calculated dependence of Hall mobility, normalized to maximum 

value, on surface potential for various surface state densities. e 
is the ratio of induced free charge to trapped charge in surface 

states and traps (from Waxman ~al. [32] ). 
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Fig. 3-58 Variation of Hall mobility with inverse temperature for various 

applied surface potentials in SiO-CdS thin film field effect 

structure (from Waxman ~al. [32] ). 
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